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outline of paper

intro & motivation

CpHMD model of the two propionic tails

e microstate model

protonation dependent dynamics

e absorption spectra
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o Tetramer (4 biliverdins) - [Ghosh et al.,, PNAS, 2016]

e monomeric variants & preserve spec properties
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propionic tails

protagonist of the "interactome" of the SFP-SFP interface

protonation state? what is the p K ,?

interplay between protonation/conformation/dynamics

intramolecular/intermolecular h-bonding, pi-pi stacking and
other interactions
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CpHMD model
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e MD in implicit solvent/chain-clustering/RESP fitting
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microstate model
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surprising h-boding
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tetrameric packing

e first hydration shell around tail C loses on average ~1.5
water molecules

o tight packing of BV and h-bonding between chains
e average tail distance of 4.3 Avs 5.9 A

e Neighboring SFP unit provides hydrophobic residues to the
left chain

e Right chain is exposed to polar residues and water
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tetrameric environment
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targeted mutations

e disrupt oligomerization while having minimal impact on the
fluorescent quantum yield of SC

e Hybrid mutations (tighter BV packing without
oligomerization)

e our paper suggests: ARG26, LYS54, ASP96, GLU97, ALA1T11
and ALA137

Slides by emainas

12


https://emainas.github.io/

spectroscopy
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what is next?

e long unbiased MD of point-mutated proteins (Noureen and
Shaena). We should talk BV FF/protonation states/setup!

calculation of protein-protein binding free energy from
unbiased MD

o dimer-dimer binding happens in long time-scales

enhanced sampling is needed
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predict complex formation

e statmech (Molecular Dynamics)
o docking (Rosetta - 1/2 Nobel 2024)
e deep learning (AlphaFold - 1/2 Nobel 2024)
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statmech for ABFE &= or RBFE &

e enhanced sampling (MetaDynamics, Gaussian accelerated
MD, T-REMD)

e biased MD (Umbrella Sampling, Steered MD)
e Coarse Grained MD (Sirah FF, Martini FF)

e endpoint free energy methods (mmPBSA or mmGBSA) -
tool in AMBER

e alchemical methods (FEP, Tl or BAR)
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plan

e quantity we wanna
calculate
(ABFE/RBFE)

e mini-lit review on
methods

e PPI-GaMD,
MiaoLab@UNC

o workshop on 28th of
October
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4. Protein-protein interaction-Gaussian accelerated molecular
dynamics (PPI-GaMD)

Protein-protein interactions (PPIs) play key roles in many fundamental biological processes such as cellular signaling
and immune responses. However, it has proven challenging to simulate repetitive protein association and dissociation
in order to calculate binding free energies and kinetics of PPIs, due to long biological timescales and complex protein
dynamics. To address this challenge, we have developed a new computational approach to all-atom simulations of PPIs
based on GaMD. The method, termed “PPI-GaMD", selectively boosts interaction potential energy between protein
partners to facilitate their slow dissociation. Meanwhile, another boost potential is applied to the remaining potential
energy of the entire system to effectively model the protein’s flexibility and rebinding. PPI-GaMD has been demonstrated
on a model system of the ribonuclease barnase interactions with its inhibitor barstar. Six independent 2 us PPI-GaMD
simulations have captured repetitive barstar dissociation and rebinding events, which enable calculations of the protein
binding thermodynamics and kinetics simultaneously. The calculated binding free energies and kinetic rate constants
agree well with the experimental data. Furthermore, PPI-GaMD simulations have provided mechanistic insights into
barstar binding to barnase, which involve long-range electrostatic interactions and multiple binding pathways, being
consistent with previous experimental and computational findings of this model system. In summary, PPI-GaMD

provides a highly efficient and easy-to-use approach for binding free energy and kinetics calculations of PPIs.

Reference

Wang, J. and Miao, Y*, (2022) Protein-protein interaction-Gaussian accelerated molecular dynamics (PPI-GaMD):
Characterization of protein binding thermodynamics and kinetics. Journal of Chemical Theory and Computation,
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method | like

e unconstrained
JCTC enhanced sampling

pubs.acs.org/JCTC
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e kinetics

e barnase-—barstar:

AGgim = —17.79 kcal /mol
AG .z, = —18.90 kcal /mol
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ideas?
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