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Abstract 

In Molecular Dynamics simulations it is computationally impossible to calculate the 

interactions between 1023 particles (the order of Avogadro’s number). Modern 

computers can simulate systems up to the order of 106 particles. In order for large 

systems to be simulated, a small part is selected (the ‘unit cell’) and periodic boundary 

conditions are employed. This means that when a particle reaches the edge of the unit 

cell it reappears from the other side with the same velocity. The problem is that when 

periodic boundary conditions are employed the total angular momentum of the unit cell 

is not conserved1,3. If one considers the unit cell to be an open system instead of a 

closed one, then a balance equation instead of conservation equation can be 

constructed for the angular momentum2. In this case, the rate of change of the angular 

momentum is the balance between the torque exerted from the particles outside the 

unit cell and the angular momentum flux through the boundaries. The result is that 

angular momentum oscillates around zero because of the interplay between the two 

aforementioned factors. In this study, the relationship between the fluctuations of the 

angular momentum and the physical characteristics of the system (System size, 

Temperature, Density) was explored.  The distribution of the angular momentum was 

fitted using a Gaussian function and the variance was measured for different system 

sizes, temperatures and densities. Finally, a possible connection between the measured 

variances and finite size effects is discussed with the ambition of designing a tool that 

could potentially be used to predict the impact and the extent of finite size effects on 

the results of the simulation. I will try to answer the following question: Suppose we 

have a two dimensional tetragonal shaped unit cell with N interacting particles. How are 

the fluctuations of angular momentum related with the physical characteristics of the 

system and how can we exploit those to diagnose finite size system effects? 

  



 

 

1. Introduction 

It is computationally impossible to simulate systems that the number of particles 

approaches Avogadro’s number and for this reason a smaller infinitely repeated cell is 

simulated. This is achieved by the use of periodic boundary conditions where particles 

that reach the surface of the box reappear from the opposite side. Although artificial 

surface effects are avoided, other spurious phenomena emerge since periodic 

boundaries impose some kind of symmetry that does not exist in the bulk of real fluids3. 

These phenomena are called finite size effects and sometimes they can lead to non 

realistic results. For example, when long range forces such as electrostatic forces are 

included, then it is possible that a particle will feel the force from itself and this is clearly 

a consequence of the periodic boundaries. The question is how one knows if these 

effects play an important role in the simulation and for this reason a new approach was 

followed; In Molecular Dynamics simulations with periodic boundary conditions, it is 

well known that angular momentum is not conserved1,2,3 since the system evolves on 

the surface of a torus. Instead of remaining constant, the projection of the angular 

momentum to the plane of the simulation fluctuates around zero2. The main idea of this 

project is that the strength of these fluctuations as measured from the variance of a 

Gaussian distribution could reveal some interesting information about the finite size 

effects of the system.   

 

2. Background and Theory 

In the presence of periodic boundary conditions the system under investigation is not 

isolated and therefore Noerther’s theorem does not apply and angular momentum is 

not conserved. Instead, angular momentum changes with time and a balance equation 

and not a conservation law can be formulated. This is based on two different factors: 

angular momentum flux and external torque exerted to the particles from their mirror 

images. Mathematically this can be shown by the following equation: 

 

            
𝑑𝑳

𝑑𝑡
= 𝐓 + 𝐐 ,      𝐋(t) = ∑ 𝐫i × m𝐯i                                   (1)  

 

The same notation as in reference 3 is used. The interplay between the torque and the 

angular momentum flux leads to the fluctuation of the angular momentum. If the 

particles interact with pair forces and we consider a time period [t’-h, t’+h] where a 

group of particles Λ+ enter the simulation box and a group of particles Λ- leave the 

simulation box, then equation (1) can be rewritten as: 



 

 

            𝐋(t′ + h) − 𝐋(t′ − h) = ∫ (𝐓 + 𝐐)dt

t′+h

t′−h

                                     (2) 

                               𝐓(t) = ∑ 𝐫i × 𝐅ij

i∈𝛬(𝑡),𝑗∈𝛬𝑖𝑚(𝑡)

                                         (3) 

Where Λim is the number of image particles at time t. Moreover the flux is given 

by:                                            

                                  ∫ 𝐐(t)dt
t′+h

t′−h

= ∑ 𝐫i × m𝐯i  − ∑ 𝐫i × m𝐯i

i∈Λ−i∈Λ+

             (4)     

Equations (2)-(4) provide the theoretical explanation of the fluctuating behavior of 

angular momentum.  

 

3. Methods  

3.1 Molecular Dynamics Methodology 

The system under study consists of N particles that interact through a Lennard Jones 

potential. The initial configuration is a square lattice and the initial velocities are 

randomly assigned from a Gaussian distribution with the constraint that the 

temperature is kept constant. The system evolves in time by integrating the equations 

of motion using the Verlet integration scheme. Throughout the project the usual 

reduced units are used where the mass and the Lennard Jones parameters epsilon and 

sigma are equal to 1. 

3.2 Installing Linux in a Windows Machine 

It is computationally demanding to calculate the forces between the particles. 

Therefore, in order to simulate a system of 256 particles in a reasonable time period 

(e.g. 1 minute) a code acceleration scheme must be used. The performance of the code 

was enhanced by converting the computationally demanding for loops into C++ code 

and compiling them using a C++ compiler. The computer that was used throughout the 

project works with a Windows 10 system that does not have a C++ compiler. For this 

reason, the option “Windows Subsystem for Linux” was used and Ubuntu was installed 

together with the g++ compiler.  

3.3 Using “weave” for the Acceleration of “for” Loops 

In order to include C++ code inside the Python script, the tool “weave” was used [See 

Appendix]. Following this methodology, the “for” loops that were used for the 



 

 

calculation of the interactions between the particles were compiled by the g++ compiler 

and a substantial acceleration was achieved. More specifically, the Python module 

“time” and the code was modified so that time was calculated for each run [See 

Appendix]. For 256 particles the performance enhancement was approximately 30-fold 

going from 30 minutes to 1 minute running time.   

3.4 Angular Momentum and Angular Momentum Fluctuations calculation 

The projection of the angular momentum to the plane of the simulation was measured 

by using the definition4: 

L = ∑(xi ∗ vyi − yi ∗ vxi) 

i=N

i=1

 

Where, xi and yi are the x and y coordinates of particle i and vyi and vxi are the velocity 

components. I calculated the angular momentum from different point (e.g. center of the 

box) but the variance is exactly the same. The resulting behavior was a fluctuating 

function around the value of zero (See figure 1) so in order to obtain a measure for the 

fluctuations a histogram was constructed using 100 bins and a proper normalization 

constant. Furthermore a Gaussian probability distribution function was fit (See figure 1, 

orange curve) and the values for the mean and the variance were calculated. Based on 

the central limit theorem, an infinitely long simulation would give a perfect Gaussian 

function as a result since none of the two directions are preferred for the angular 

momentum. This idea would break down if a magnetic field was present or if the system 

was rotating (presence of Coriolis force) and the resulting distribution would be 

asymmetric with respect to the mean. The variance of the resulting Gaussian 

distribution is considered to be a direct measure of the fluctuations of the projection of 

the angular momentum and was used as such throughout this study. 

  

Figure 1. Example of the oscillatory behavior of angular momentum and the corresponding distribution on the 
right. The orange curve represents the Gaussian fit. 

  

 



 

 

4. Results 

4.1 Angular Momentum Fluctuations and System Size 

Keeping the density constant (ρ = 1 particle/L2), the fluctuations of the angular 

momentum were measured for different system sizes. Initially, the number of particles 

is 16 and the length of the side of the tetragonal unit cell is 4.  Different simulations 

were set up by increasing the size of the side of the square by the number 2 every time 

and the number of particles was increased so that the density remains fixed. The results 

can be seen in table 1. 

Simulation N L2 Variance1 Variance2 Error 

1 16 16 5.0620 4.5959 9.21% 

2 36 36 10.541 10.7561 2.04% 

3 64 64 21.718 24.0655 10.81% 

4 100 100 40.660 35.8177 11.91% 

5 144 144 51.152 63.5907 24.32% 

6 196 196 74.629 82.854 11.02% 

7 256 256 104.78 97.6628 6.79% 

8 324 324 148.68 145.685 2.01% 

9 400 400 160.13 149.148 6.86% 

10 484 484 211.76 163.4284 22.82% 
Table 1. For different system sizes the variance was measured. Two random seeds were used 

resulting to two different values for the variance.   

The particle trajectories, for each one of the 10 simulations can be found in the 

Supplementary Material. The variance for each set of simulations seems to depend 

linearly on the size of the system (Area of the simulation box). 

 

Figure 2. Linear relation between the variance and the size of the system for the first set of simulations. 
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Figure 3. Linear relation between the variance and the size of the system for the second set of simulations 

4.2 Angular Momentum Fluctuations and Temperature 

Next, the angular momentum fluctuations of the system were measured varying the 

temperature and keeping the size and the density constant. For N=256 and L=16 values 

for the mean and the variance of the distribution were obtained changing the 

temperature from 0.001 to 10. Results are shown in table 2. 

Simulation Initial 
Temperature 

Variance 1 Variance 2 Error  

1 0.01 75.524 76.938 1.87% 

2 0.05 110.70 92.710 16.3% 

3 0.1 77.510 114.00 47.1% 

4 0.5 86.181 92.550 7.39% 

5 1 104.78 97.663 6.79% 

6 2 145.12 143.00 1.46% 

7 3 140.78 158.69 12.7% 

8 4 157.48 180.92 14.9% 

9 5 172.21 177.86 3.3% 

10 6 171.97 194.12 12.9% 

11 7 184.06 220.63 19.9% 

12 8 218.16 220.83 1.22% 

13 9 245.32 261.20 6.47% 

14 10 221.35 251.35 13.5% 
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Table 2. For different initial temperatures the variance was measured. Two random seeds were 

used resulting to two different variances. The error is estimated between these two values.  

 

 

Figure 4. Variance as a function of the initial temperature for the first set of simulations 

 

Figure 5. Variance as a function of the initial temperature for the second set of simulations 

The particle trajectories, for the first set of simulations can be found in the 

Supplementary Material.  
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4.3 Angular Momentum Fluctuations and Density 

For the next set of simulations the initial temperature was kept constant and equal to 1 

and the number of particles was 256. To adjust the density of the system, different 

values for the size of the box were selected. The results can be seen in table 3. 

Simulation L Density Variance 1 Variance 2 Error 

1 15.1 1.12276 116.088 112.796 2.84% 

2 15.2 1.10803 116.039 113.030 2.59% 

3 15.3 1.09360 115.687 126.300 9.17% 

4 15.4 1.07944 129.749 101.838 21.5% 

5 15.5 1.06556 104.100 124.054 19.2% 

6 15.6 1.05194 135.644 115.783 14.6% 

7 15.7 1.03858 100.077 122.417 22.3% 

8 15.8 1.02548 132.248 111.094 16.0% 

9 15.9 1.01262 116.563 98.7210 15.3% 

10 16 1 104.782 97.6630 6.79% 

11 16.1 0.987616 109.812 98.6994 10.1% 

12 16.2 0.975461 86.953 94.8160 9.04% 

13 16.3 0.963529 105.453 95.5480 9.39% 

14 16.4 0.951814 111.258 97.2580 12.6% 

15 16.5 0.940312 105.388 114.846 8.97% 

16 16.6 0.929017 96.31 99.8890 3.71% 

17 16.7 0.917925 106.774 89.3340 16.3% 

18 16.8 0.907029 109.139 86.4280 20.8% 

19 16.9 0.896327 84.23 110.829 31.6% 

Table 3. For different system densities the mean and the variance were measured. 

 



 

 

 

Figure 6. Fluctuating behavior of the variance as a function of the density of the system for the first set of 
simulations 

 

Figure 7. Fluctuating behavior of the variance as a function of the density for the second set of simulations 

The particle trajectories, for each one of the 9 simulations can be found in the 

Supplementary Material. 
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5. Discussion 

5.1 System Size and Variance 

The aim of this study was to investigate possible connections between the non 

conservative behavior of angular momentum and the physical characteristics of a two 

dimensional Lennard Jones fluid in molecular dynamics simulations. The oscillatory 

behavior of the projection of the angular momentum to the plane of the simulation was 

reproduced successfully as expected by intuition and matches the resulting behavior 

obtained in reference 2. From the first part of the results it can be seen that as the 

system gets larger the fluctuations get larger but there is no obvious way that this is 

related to the trajectories of the particles. For example, when going from Simulation 5 

to Simulation 6 there is a clear difference, since in the latter one there is a group of 

particles on the top right that have diffused away from their initial positions giving this 

blurry spot. Although, the system is technically the same in some of the simulations this 

diffusive behavior was observed and in these simulations the variance increment is 

larger. This can be observed when going from Simulation 5 → 6, 6 →7, 7→8 and 9→10. 

These increments in the variance of the distribution reflect the higher diffusivity of 

certain groups of molecules and it is not observed for smaller systems. There is a 

possibility that this is caused by the assignment of a very high initial velocity but there is 

no reason why this would not happen in the smaller systems (Simulations 1 to 5). Since 

variations in the angular momentum are sensitive to the change of the diffusivity of 

particles then it would be reasonable to think a connection with phase transitions. As 

the system approaches a more “mobile” state (e.g. from liquid to vapor or from solid to 

liquid) fluctuations in the angular momentum become larger. For Simulation 11 to 16 

there exists some hesitation when it comes to drawing conclusions because the 

distributions seem to not follow the Gaussian behavior and larger simulation times are 

needed. 

5.2 Temperature and Variance 

When it comes to the connection between variance and temperature it is clear that as 

the system has a higher average temperature the particles move more rapidly and this is 

reflected to larger angular momentum fluctuations. 

5.3 Density and Variance 

Surprisingly, the fluctuations seemed not to depend on the density of the system. 

Intuition suggested that as the system gets less dense and these diffuse spots to appear 

as in the first set of simulations, the variance would be larger. Apparently, variance 

changes only a little and it’s even more surprising that for very dilute systems where 

particles can practically move almost everywhere in the simulation cell, the fluctuations 

in the angular momentum are not as large as expected.  



 

 

6. Conclusions 

From this work a number of conclusions can be drawn about the relation between 

angular momentum fluctuations and the characteristics of the system. The ultimate goal 

of this study is to relate the variance of the angular momentum distribution to finite size 

effects. Apart from the aforementioned connection to phase transitions other effects 

could be quantified. For example, the diffusion coefficient of a particle in a periodic fluid 

needs to be corrected3 due to the hydrodynamic flow fields of all the periodic images of 

the particle that decay as 1/r. This effect is similar mathematically to the Coulomb case 

where the range is very large compared to Lennard Jones interactions and spurious 

correlations may rise from interactions between a charged particle and its periodic 

images. Moreover, when a particle moves in a fluid its momentum is transferred to the 

rest of the fluid as sound and over damped shear waves through particle collisions. After 

these waves travel distance that is comparable to the size of the box, the particle will 

interact with itself giving rise to artificial correlations. It is not clear how these effects 

can be related to the variances measured and probably more specific simulations should 

be made. The next step would be to compare the results with different diffusion 

coefficients and see if there are connections. Moreover a particle could be tagged and 

carefully track its trajectory for a very long time to see if the hydrodynamics interactions 

with itself are related with the variations to its angular momentum. Finally I would like 

to suggest a few ways how this project can be improved. Firstly, more simulations with 

different seeds must be run so that the error is minimized. This can also be done by 

increasing the time of the simulation, letting this way the distribution of the angular 

momentum to approach the Gaussian limit. The next step would be to investigate 

further the mathematical relation between the variance and the physical characteristics 

of the system. From a first simple approach it can be deduced that the variance changes 

linearly with the size of the system and the initial temperature but seems to fluctuate 

around a constant value as a function of the density of the system. 
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8. Appendix-Code used throughout the project (Brad Marston’s code taken 

from canvas): 

#!/usr/bin/env python 
 
import numpy  
import time 
from numpy import * 
from pylab import *  # plotting library 
from scipy.stats import norm 
import matplotlib.mlab as mlab  
 
import weave 
from weave import converters 
 
class MolecularDynamics: 
 
    """Class that describes the molecular dynamics of a gas of atoms in units where m = epsilon = sigma = 
kb = 1""" 
     
    dt = 0.001 # time increment 
    sampleInterval = 100 
     
    def __init__(self, N=4, L=10.0, initialTemperature=0.0, initialAngularMomentum=0.0): 
     
        numpy.random.seed(219) # random number generator used for initial velocities (and sometimes 
positions) seed was 219 
         
        self.N = N  # number of particles  
        self.L = L  # length of square side  
        self.initialTemperature = initialTemperature 
        self.initialAngularMomentum = initialAngularMomentum 
         
        self.t = 0.0 # initial time 
        self.tArray = array([self.t]) # array of time steps that is added to during integration 
        self.steps = 0 
         
        self.EnergyArray = array([]) # list of energy, sampled every sampleInterval time steps 
        self.sampleTimeArray = array([]) 
        self.angularMomentumArray = array([]) 
         
        # accumulate statistics during time evolution 
        self.temperatureArray = array([self.initialTemperature]) 
        self.temperatureAccumulator = 0.0 
        self.angularMomentumArray = array([self.initialAngularMomentum]) 
        self.angularMomentumAccumulator = 0.0 
        self.squareTemperatureAccumulator = 0.0 
        self.virialAccumulator = 0.0 
 
        self.x = zeros(2*N) # NumPy array of N (x, y) positions 
        self.v = zeros(2*N) # array of N (vx, vy) velocities 
 
        self.xArray = array([]) # particle positions that is added to during integration 
        self.vArray = array([]) # particle velocities 
         



 

 

        self.forceType = "weavelennardJones" 
 
 

    def minimumImage(self, x): # minimum image approximation (Gould Listing 8.2) 
     
        L = self.L 
        halfL = 0.5 * L 
         
        return (x + halfL) % L - halfL 
 

    def force(self):  
     
        if (self.forceType == "weavelennardJones"): 
            #f, virial = self.lennardJonesForce() 
            f, virial = self.weaveLennardJonesForce() 
             
        if (self.forceType == "weavepowerLaw"): 
            #f, virial = self.powerLawForce() 
            f, virial = self.weavePowerLawForce() 
         
        self.virialAccumulator += virial 
         
        return f 
         
     
    def lennardJonesForce(self): # Gould Eq. 8.3 (NumPy vector form which is faster) 
     
        N = self.N 
        virial = 0.0 
        tiny = 1.0e-40 # prevents division by zero in calculation of self-force 
        L = self.L 
        halfL = 0.5 * L 
         
        x = self.x[arange(0, 2*N, 2)] 
        y = self.x[arange(1, 2*N, 2)]    
        f = zeros(2*N) 
         
        minimumImage = self.minimumImage 
         
        for i in range(N):  # The O(N**2) calculation that slows everything down 
         
            dx = minimumImage(x[i] - x) 
            dy = minimumImage(y[i] - y) 
             
            r2inv = 1.0/(dx**2 + dy**2 + tiny) 
            c = 48.0 * r2inv**7 - 24.0 * r2inv**4 
            fx = dx * c 
            fy = dy * c 
             
            fx[i] = 0.0 # no self force 
            fy[i] = 0.0 
            f[2*i] = fx.sum() 
            f[2*i+1] = fy.sum() 
             



 

 

            virial += dot(fx, dx) + dot(fy, dy) 
                 
        return f, 0.5*virial 
         
         
    def weaveLennardJonesForce(self): # Gould Eq. 8.3 
     
        N = self.N 
        L = self.L 
        halfL = 0.5 * L 
 
        x = self.x[arange(0, 2*N, 2)] 
        y = self.x[arange(1, 2*N, 2)] 
         
        f = zeros(2*N) 
        virial = zeros(1) 
         
        code = """ 
                double dx, dy, r2inv, r6inv, r8inv, c, fx, fy; 
                 
                for (int i = 0; i < N; i++) { 
                    for (int j = i+1; j < N; j++) { 
                     
                        dx = x(i) - x(j); 
                        if (dx > halfL) dx = dx - L; 
                        if (dx < -halfL) dx = dx + L; 
                         
                        dy = y(i) - y(j); 
                        if (dy > halfL) dy = dy - L; 
                        if (dy < -halfL) dy = dy + L; 
 
                        r2inv = 1.0 / (dx*dx + dy*dy); 
                        r6inv = r2inv*r2inv*r2inv; 
                        r8inv = r2inv*r6inv; 
                        c = 48.0 * r8inv*r6inv - 24.0 * r8inv; 
                        fx = dx * c; 
                        fy = dy * c; 
                 
                        f(2*i) += fx; 
                        f(2*i+1) += fy; 
                        f(2*j) -= fx; // Newton's 3rd law 
                        f(2*j+1) -= fy; 
                 
                        virial(0) += fx*dx + fy*dy; // for virial accumulator (calculation of pressure) 
 
                    } 
                } 
                """ 
                 
        weave.inline(code, ['N', 'x', 'y', 'L', 'halfL', 'f', 'virial'], type_converters=converters.blitz, compiler='gcc') 
         
        return f, virial[0] 
 
 

    def powerLawForce(self):  



 

 

     
        N = self.N 
        virial = 0.0 
        tiny = 1.0e-40 # prevents division by zero in calculation of self-force 
        halfL = 0.5 * self.L 
         
        x = self.x[arange(0, 2*N, 2)] 
        y = self.x[arange(1, 2*N, 2)]    
        f = zeros(2*N) 
        minimumImage = self.minimumImage 
        for i in range(N):  # The O(N**2) calculation that slows everything down 
         
            dx = minimumImage(x[i] - x) 
            dy = minimumImage(y[i] - y) 
             
            r2 = dx**2 + dy**2 + tiny 
            r6inv = pow(r2, -3) 
            fx = dx * r6inv 
            fy = dy * r6inv 
             
            fx[i] = 0.0 # no self force 
            fy[i] = 0.0 
            f[2*i] = fx.sum() 
            f[2*i+1] = fy.sum() 
             
            virial += dot(fx, dx) + dot(fy, dy)  
             
        return f, 0.5 * virial  
         
 
    def weavePowerLawForce(self): # Gould Eq. 8.3 
     
        N = self.N 
        L = self.L 
        halfL = 0.5 * L 
 
        x = self.x[arange(0, 2*N, 2)] 
        y = self.x[arange(1, 2*N, 2)] 
         
        f = zeros(2*N) 
        virial = zeros(1) 
         
        code = """ 
                double dx, dy, r2inv, r6inv, r8inv, c, fx, fy; 
                 
                for (int i = 0; i < N; i++) { 
                    for (int j = i+1; j < N; j++) { 
                     
                        dx = x(i) - x(j); 
                        if (dx > halfL) dx = dx - L; 
                        if (dx < -halfL) dx = dx + L; 
                         
                        dy = y(i) - y(j); 
                        if (dy > halfL) dy = dy - L; 
                        if (dy < -halfL) dy = dy + L; 
 



 

 

                        r2inv = 1.0 / (dx*dx + dy*dy); 
                        r6inv = r2inv*r2inv*r2inv; 
                        fx = dx * r6inv; 
                        fy = dy * r6inv; 
                 
                        f(2*i) += fx; 
                        f(2*i+1) += fy; 
                        f(2*j) -= fx; // Newton's 3rd law 
                        f(2*j+1) -= fy; 
                 
                        virial(0) += fx*dx + fy*dy; // for virial accumulator (calculation of pressure) 
 
                    } 
                } 
                """ 
                 
        weave.inline(code, ['N', 'x', 'y', 'L', 'halfL', 'f', 'virial'], type_converters=converters.blitz, compiler='gcc') 
         
        return f, virial[0] 
 

# TIME EVOLUTION METHODS  
 
    def verletStep(self): # Gould Eqs. 8.4a and 8.4b 
     
        a = self.force() 
        self.x += self.v * self.dt + 0.5 * self.dt**2 * a 
        self.x = self.x % self.L    # periodic boundary conditions 
        self.v += 0.5 * self.dt * (a + self.force()) 
                 
         
    def evolve(self, time=10.0): 
     
        steps = int(abs(time/self.dt)) 
        for i in range(steps): 
         
            self.verletStep() 
            self.zeroTotalMomentum() 
             
            self.t += self.dt 
            self.tArray = append(self.tArray, self.t) 
             
            if (i % self.sampleInterval == 0): # only calculate energy every sampleInterval steps to reduce load 
                self.EnergyArray = append(self.EnergyArray, self.energy()) 
                self.sampleTimeArray = append(self.sampleTimeArray, self.t) 
                self.xArray = append(self.xArray, self.x) 
                self.vArray = append(self.vArray, self.v) 
             
            T = self.temperature() 
            self.steps += 1 
            self.temperatureArray = append(self.temperatureArray, T) 
            self.temperatureAccumulator += T 
            self.squareTemperatureAccumulator += T*T 
 
            L = self.angularMomentum() 
            self.steps += 1 



 

 

            self.angularMomentumArray = append(self.angularMomentumArray, L) 
            self.angularMomentumAccumulator += L 
             
             
    def zeroTotalMomentum(self): 
     
        vx = self.v[arange(0, 2*self.N, 2)] 
        vy = self.v[arange(1, 2*self.N, 2)] 
 
        vx -= vx.mean() # zero mean momentum 
        vy -= vy.mean() 
         
        self.v[arange(0, 2*self.N, 2)] = vx 
        self.v[arange(1, 2*self.N, 2)] = vy 
 
             
    def reverseTime(self): 
     
        self.dt = -self.dt 
             
             
    def cool(self, time=1.0): 
     
        steps = int(time/self.dt) 
        for i in range(steps): 
            self.verletStep() 
            self.v *= (1.0 - self.dt) # friction slows down atoms 
             
        self.resetStatistics() 
 
             
 
# INITIAL CONDITION METHODS      
         
    def randomPositions(self): 
     
        self.x = self.L * numpy.random.random(2*self.N) 
         
        self.forceType = "weavepowerLaw"  
        self.cool(time=1.0) 
        self.forceType = "weavelennardJones" 
 

    def triangularLatticePositions(self): 
     
        self.rectangularLatticePositions() 
        #self.randomPositions() 
        self.v += numpy.random.random(2*self.N) - 0.5 # jiggle to break symmetry 
         
        self.forceType = "weavepowerLaw"  
        self.cool(time=10.0) 
        self.forceType = "weavelennardJones" 
 

    def rectangularLatticePositions(self): # assume that N is a square integer (4, 16, 64, ...) 
     



 

 

        nx = int(sqrt(self.N)) 
        ny = nx 
        dx = self.L / nx 
        dy = self.L / ny 
         
        for i in range(nx): 
            x = (i + 0.5) * dx 
            for j in range(ny): 
                y = (j + 0.5) * dy 
                self.x[2*(i*ny+j)] = x 
                self.x[2*(i*ny+j)+1] = y 
                 
         
    def randomVelocities(self): 
     
        self.v = numpy.random.random(2*self.N) - 0.5 
     
        self.zeroTotalMomentum() 
         
        T = self.temperature() 
        self.v *= sqrt(self.initialTemperature/T) 
         
         
         
# MEASUREMENT METHODS 
 
    def kineticEnergy(self): 
     
        return 0.5 * (self.v * self.v).sum() 
         
     
    def potentialEnergy(self): 
     
        return self.weaveLennardJonesPotentialEnergy() 
        #return self.lennardJonesPotentialEnergy() 
         
         
    def lennardJonesPotentialEnergy(self): # Gould Eqs. 8.1 and 8.2 
     
        tiny = 1.0e-40 # prevents division by zero in calculation of self-force 
        halfL = 0.5 * self.L 
        N = self.N 
         
        x = self.x[arange(0, 2*N, 2)] 
        y = self.x[arange(1, 2*N, 2)]    
        U = 0.0 
        minimumImage = self.minimumImage 
        for i in range(N):  # The O(N**2) calculation that slows everything down 
         
            dx = minimumImage(x[i] - x) 
            dy = minimumImage(y[i] - y) 
 
            r2inv = 1.0/(dx**2 + dy**2 + tiny) 
            dU = r2inv**6 - r2inv**3 
            dU[i] = 0.0 # no self-interaction 
            U += dU.sum() 



 

 

 
        return 2.0 * U 
         
         
    def weaveLennardJonesPotentialEnergy(self): # Gould Eqs. 8.1 and 8.2 
     
        L = self.L 
        halfL = 0.5 * L 
        N = self.N 
         
        x = self.x[arange(0, 2*N, 2)] 
        y = self.x[arange(1, 2*N, 2)]    
        U = zeros(1) 
 
        code = """ 
            double dx, dy, r2inv, r6inv; 
                 
            for (int i = 0; i < N; i++) { 
                for (int j = i+1; j < N; j++) { 
                     
                    dx = x(i) - x(j); 
                    if (dx > halfL) dx = dx - L; 
                    if (dx < -halfL) dx = dx + L; 
                         
                    dy = y(i) - y(j); 
                    if (dy > halfL) dy = dy - L; 
                    if (dy < -halfL) dy = dy + L; 
 
                    r2inv = 1.0 / (dx*dx + dy*dy); 
                    r6inv = r2inv*r2inv*r2inv; 
                     
                    U(0) += r6inv*r6inv - r6inv; 
 
                } 
            } 
            """ 
                 
        weave.inline(code, ['N', 'x', 'y', 'L', 'halfL', 'U'], type_converters=converters.blitz, compiler='gcc') 
 
        return 4.0 * U[0] 
 
         
    def energy(self): 
     
        return self.potentialEnergy() + self.kineticEnergy() 
         
    def temperature(self): # Gould Eq. 8.6 
     
        return self.kineticEnergy() / self.N 
 
    def angularMomentum(self): # Calculate z component of angular momentum using definition 
         
        vx = self.v[arange(0, 2*self.N, 2)] 
        vy = self.v[arange(1, 2*self.N, 2)] 
 
        x = self.x[arange(0, 2*self.N, 2)] 



 

 

        y = self.x[arange(1, 2*self.N, 2)] 
         
        return ((x-self.L/2)*vy-(y-self.L/2)*vx).sum()  
         
 

# STATISTICS METHODS         
         
    def resetStatistics(self): 
     
        self.steps = 0 
        self.temperatureAccumulator = 0.0 
        self.angularMomentumAccumulator = 0.0 
        self.squareTemperatureAccumulator = 0.0 
        self.virialAccumulator = 0.0 
        self.xArray = array([]) 
        self.vArray = array([]) 
 
         
    def meanTemperature(self): 
     
        return self.temperatureAccumulator / self.steps 
         
         
    def meanSquareTemperature(self): 
         
        return self.squareTemperatureAccumulator / self.steps 
         
         
    def meanPressure(self): # Gould Eq. 8.9 
     
        meanVirial = 0.5 * self.virialAccumulator / self.steps # divide by 2 because force is calculated twice 
per step 
        return 1.0 + 0.5 * meanVirial / (self.N * self.meanTemperature()) 
         
         
    def heatCapacity(self): # Gould Eq. 8.12 
     
        meanTemperature = self.meanTemperature() 
        meanSquareTemperature = self.meanSquareTemperature() 
        sigma2 = meanSquareTemperature - meanTemperature**2 
        denom = 1.0 - sigma2 * self.N / meanTemperature**2 
        return self.N / denom 
 
    def meanEnergy(self): 
     
        return self.EnergyArray.mean() 
         
    def stdEnergy(self): 
     
        return self.EnergyArray.std() 
         
         
# PLOTTING METHODS 
                 
    def plotPositions(self): 



 

 

     
        figure(1) 
        scatter(self.x[arange(0, 2*self.N, 2)], self.x[arange(1, 2*self.N, 2)], s=5.0, marker='o', alpha=1.0) 
        xlabel("x") 
        ylabel("y") 
         
         
    def plotTrajectories(self, number=1): 
     
        figure(2) 
        xlabel("x") 
        ylabel("y") 
        N = self.N 
        size = len(self.xArray)/(2*N) 
        r = reshape(self.xArray, [size, 2*N]) 
        for i in range(number): 
            x = r[:, 2*i] 
            y = r[:, 2*i+1]  
            plot(x, y, ".") 
         
         
    def plotTemperature(self): 
     
        figure(3) 
        plot(self.tArray, self.temperatureArray) 
        xlabel("time") 
        ylabel("temperature") 
         
         
    def plotEnergy(self): 
     
        figure(4) 
        plot(self.sampleTimeArray, self.EnergyArray) 
        xlabel("time") 
        ylabel("Energy") 
         
         
    def velocityHistogram(self): 
     
        figure(5) 
        hist(self.vArray, bins=100, normed=1) 
        xlabel("velocity in x- or y-directions") 
        ylabel("probability") 
         
    def plotAngularMomentum(self): 
 
        figure(6) 
        plot(self.tArray, self.angularMomentumArray) 
        xlabel("time") 
        ylabel("Angular Momentum") 
 
    def angularMomentumHistogram(self): 
 
        figure(7) 
        hist(self.angularMomentumArray, bins=100, normed=1) 
        xlabel('angular momentum') 



 

 

        ylabel('Probability') 
 
        mu = mean(self.angularMomentumArray) 
        variance = var(self.angularMomentumArray) 
        sigma = sqrt(variance) 
        print("Mean of the Gaussian Distribution is : ",mu) 
        print("Sigma of the Gaussian Distribution is : ",sigma) 
 
        t = linspace(min(self.angularMomentumArray), max(self.angularMomentumArray), 100) 
        plot(t, mlab.normpdf(t, mu, sigma)) 
         
    def showPlots(self): 
        show() 
 

# RESULTS METHODS 
 
    def results(self): 
        print("\n\nRESULTS\n")  
        print("time = ", md.t, " total energy = ", md.energy(), " and temperature = ", md.temperature()) 
        if (self.steps > 0): 
            print("Mean energy = ", md.meanEnergy(), " and standard deviation = ", md.stdEnergy()) 
            print("Cv = ", md.heatCapacity(), " and PV/NkT = ", md.meanPressure()) 
 

start = time.time()      
#md = MolecularDynamics(N=16, L=4, initialTemperature=1.0, initialAngularMomentum=0.0) # instantiate 
object 
#md = MolecularDynamics(N=36, L=6, initialTemperature=1.0, initialAngularMomentum=0.0) # instantiate 
object 
#md = MolecularDynamics(N=64, L=8, initialTemperature=1.0, initialAngularMomentum=0.0) # instantiate 
object 
#md = MolecularDynamics(N=100, L=10, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=144, L=12, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=196, L=14, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
 
#md = MolecularDynamics(N=256, L=30, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=20, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=19, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=18, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=17, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=15.1, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=15.2, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=15.3, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 



 

 

#md = MolecularDynamics(N=256, L=15.4, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=15.5, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=15.6, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=15.7, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=15.8, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=15.9, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
 
#md = MolecularDynamics(N=256, L=16.1, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16.2, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16.3, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16.4, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16.5, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16.6, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16.7, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16.8, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
md = MolecularDynamics(N=256, L=16.9, initialTemperature=1, initialAngularMomentum=0.0) # 
instantiate object 
 

#md = MolecularDynamics(N=256, L=16, initialTemperature=0.05, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=0.1, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=0.5, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=2.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=3.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=4.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=5.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=6.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=7.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=8.0, initialAngularMomentum=0.0) # 
instantiate object 



 

 

#md = MolecularDynamics(N=256, L=16, initialTemperature=9.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=256, L=16, initialTemperature=10.0, initialAngularMomentum=0.0) # 
instantiate object 
 
#md = MolecularDynamics(N=324, L=18, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=400, L=20, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=484, L=22, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=576, L=24, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=676, L=26, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=784, L=28, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=900, L=30, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=1024, L=32, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
#md = MolecularDynamics(N=1156, L=34, initialTemperature=1.0, initialAngularMomentum=0.0) # 
instantiate object 
 

# EQUILIBRATION AND STATISTICS 
md.triangularLatticePositions() 
md.randomVelocities() 
md.plotPositions() 
md.results() 
md.evolve(time=10.0) # initial time evolution 
md.resetStatistics() # remove transient behavior 
md.evolve(time=20.0) # accumulate statistics  
md.results() 
md.angularMomentum() 
 
end = time.time() 
print('Time is %.2f'%(end-start)) 
 
md.plotEnergy() 
md.plotTrajectories(md.N) 
md.plotTemperature() 
md.velocityHistogram() 
md.plotAngularMomentum() 
md.angularMomentumHistogram() 
md.showPlots() 

 

 

 

 



 

 

9. Supplementary Material 

9.1 Angular Momentum and System Size Figures 

Particle trajectories with increasing system size (From simulation 1 to  16): 

  

  

  



 

 

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

9.2 Angular Momentum and Temperature Figures 

Particle trajectories of different simulations with increasing initial temperature (N=256 

and ρ=1): 



 

 

 

 

 

 

 

 

 

 

 



 

 

9.3 Angular Momentum and Density Figures 

Particle trajectories from different simulations with decreasing density (N=256 and 

initial temperature=1 for all simulations): 



 

 

 


