

Name: Eleftherios Mainas

Department: Chemistry

Status: 1st year PhD Student

Course: Theoretical Physics I: Classical Mechanics

Instructor: Brad Marston

Outline:

Abstract

1. Introduction

2. Background and Theory

3. Methods

3.1 Molecular Dynamics Methodology

3.2 Installing Linux in a Windows Machine

3.3 Using “weave” for the Acceleration of “for” Loops

3.4 Calculation of Angular Momentum

4. Results

4.1 Angular Momentum Fluctuations and System Size

4.2 Angular Momentum Fluctuations and Temperature

4.3 Angular Momentum Fluctuations and Density

5. Discussion

 5.1 System Size and Variance

 5.2 Temperature and Variance

 5.3 Density and Variance

6. Conclusion

7. References

8. Appendices

Molecular Dynamics Code

9. Supplementary Information

9.1 Angular Momentum and System Size Figures

9.2 Angular Momentum and Temperature Figures

9.3 Angular Momentum and Density Figures

Abstract

In Molecular Dynamics simulations it is computationally impossible to calculate the

interactions between 1023 particles (the order of Avogadro’s number). Modern

computers can simulate systems up to the order of 106 particles. In order for large

systems to be simulated, a small part is selected (the ‘unit cell’) and periodic boundary

conditions are employed. This means that when a particle reaches the edge of the unit

cell it reappears from the other side with the same velocity. The problem is that when

periodic boundary conditions are employed the total angular momentum of the unit cell

is not conserved1,3. If one considers the unit cell to be an open system instead of a

closed one, then a balance equation instead of conservation equation can be

constructed for the angular momentum2. In this case, the rate of change of the angular

momentum is the balance between the torque exerted from the particles outside the

unit cell and the angular momentum flux through the boundaries. The result is that

angular momentum oscillates around zero because of the interplay between the two

aforementioned factors. In this study, the relationship between the fluctuations of the

angular momentum and the physical characteristics of the system (System size,

Temperature, Density) was explored. The distribution of the angular momentum was

fitted using a Gaussian function and the variance was measured for different system

sizes, temperatures and densities. Finally, a possible connection between the measured

variances and finite size effects is discussed with the ambition of designing a tool that

could potentially be used to predict the impact and the extent of finite size effects on

the results of the simulation. I will try to answer the following question: Suppose we

have a two dimensional tetragonal shaped unit cell with N interacting particles. How are

the fluctuations of angular momentum related with the physical characteristics of the

system and how can we exploit those to diagnose finite size system effects?

1. Introduction

It is computationally impossible to simulate systems that the number of particles

approaches Avogadro’s number and for this reason a smaller infinitely repeated cell is

simulated. This is achieved by the use of periodic boundary conditions where particles

that reach the surface of the box reappear from the opposite side. Although artificial

surface effects are avoided, other spurious phenomena emerge since periodic

boundaries impose some kind of symmetry that does not exist in the bulk of real fluids3.

These phenomena are called finite size effects and sometimes they can lead to non

realistic results. For example, when long range forces such as electrostatic forces are

included, then it is possible that a particle will feel the force from itself and this is clearly

a consequence of the periodic boundaries. The question is how one knows if these

effects play an important role in the simulation and for this reason a new approach was

followed; In Molecular Dynamics simulations with periodic boundary conditions, it is

well known that angular momentum is not conserved1,2,3 since the system evolves on

the surface of a torus. Instead of remaining constant, the projection of the angular

momentum to the plane of the simulation fluctuates around zero2. The main idea of this

project is that the strength of these fluctuations as measured from the variance of a

Gaussian distribution could reveal some interesting information about the finite size

effects of the system.

2. Background and Theory

In the presence of periodic boundary conditions the system under investigation is not

isolated and therefore Noerther’s theorem does not apply and angular momentum is

not conserved. Instead, angular momentum changes with time and a balance equation

and not a conservation law can be formulated. This is based on two different factors:

angular momentum flux and external torque exerted to the particles from their mirror

images. Mathematically this can be shown by the following equation:

𝑑𝑳

𝑑𝑡
= 𝐓 + 𝐐 , 𝐋(t) = ∑ 𝐫i × m𝐯i (1)

The same notation as in reference 3 is used. The interplay between the torque and the

angular momentum flux leads to the fluctuation of the angular momentum. If the

particles interact with pair forces and we consider a time period [t’-h, t’+h] where a

group of particles Λ+ enter the simulation box and a group of particles Λ- leave the

simulation box, then equation (1) can be rewritten as:

 𝐋(t′ + h) − 𝐋(t′ − h) = ∫ (𝐓 + 𝐐)dt

t′+h

t′−h

 (2)

 𝐓(t) = ∑ 𝐫i × 𝐅ij

i∈𝛬(𝑡),𝑗∈𝛬𝑖𝑚(𝑡)

 (3)

Where Λim is the number of image particles at time t. Moreover the flux is given

by:

 ∫ 𝐐(t)dt
t′+h

t′−h

= ∑ 𝐫i × m𝐯i − ∑ 𝐫i × m𝐯i

i∈Λ−i∈Λ+

 (4)

Equations (2)-(4) provide the theoretical explanation of the fluctuating behavior of

angular momentum.

3. Methods

3.1 Molecular Dynamics Methodology

The system under study consists of N particles that interact through a Lennard Jones

potential. The initial configuration is a square lattice and the initial velocities are

randomly assigned from a Gaussian distribution with the constraint that the

temperature is kept constant. The system evolves in time by integrating the equations

of motion using the Verlet integration scheme. Throughout the project the usual

reduced units are used where the mass and the Lennard Jones parameters epsilon and

sigma are equal to 1.

3.2 Installing Linux in a Windows Machine

It is computationally demanding to calculate the forces between the particles.

Therefore, in order to simulate a system of 256 particles in a reasonable time period

(e.g. 1 minute) a code acceleration scheme must be used. The performance of the code

was enhanced by converting the computationally demanding for loops into C++ code

and compiling them using a C++ compiler. The computer that was used throughout the

project works with a Windows 10 system that does not have a C++ compiler. For this

reason, the option “Windows Subsystem for Linux” was used and Ubuntu was installed

together with the g++ compiler.

3.3 Using “weave” for the Acceleration of “for” Loops

In order to include C++ code inside the Python script, the tool “weave” was used [See

Appendix]. Following this methodology, the “for” loops that were used for the

calculation of the interactions between the particles were compiled by the g++ compiler

and a substantial acceleration was achieved. More specifically, the Python module

“time” and the code was modified so that time was calculated for each run [See

Appendix]. For 256 particles the performance enhancement was approximately 30-fold

going from 30 minutes to 1 minute running time.

3.4 Angular Momentum and Angular Momentum Fluctuations calculation

The projection of the angular momentum to the plane of the simulation was measured

by using the definition4:

L = ∑(xi ∗ vyi − yi ∗ vxi)

i=N

i=1

Where, xi and yi are the x and y coordinates of particle i and vyi and vxi are the velocity

components. I calculated the angular momentum from different point (e.g. center of the

box) but the variance is exactly the same. The resulting behavior was a fluctuating

function around the value of zero (See figure 1) so in order to obtain a measure for the

fluctuations a histogram was constructed using 100 bins and a proper normalization

constant. Furthermore a Gaussian probability distribution function was fit (See figure 1,

orange curve) and the values for the mean and the variance were calculated. Based on

the central limit theorem, an infinitely long simulation would give a perfect Gaussian

function as a result since none of the two directions are preferred for the angular

momentum. This idea would break down if a magnetic field was present or if the system

was rotating (presence of Coriolis force) and the resulting distribution would be

asymmetric with respect to the mean. The variance of the resulting Gaussian

distribution is considered to be a direct measure of the fluctuations of the projection of

the angular momentum and was used as such throughout this study.

Figure 1. Example of the oscillatory behavior of angular momentum and the corresponding distribution on the
right. The orange curve represents the Gaussian fit.

4. Results

4.1 Angular Momentum Fluctuations and System Size

Keeping the density constant (ρ = 1 particle/L2), the fluctuations of the angular

momentum were measured for different system sizes. Initially, the number of particles

is 16 and the length of the side of the tetragonal unit cell is 4. Different simulations

were set up by increasing the size of the side of the square by the number 2 every time

and the number of particles was increased so that the density remains fixed. The results

can be seen in table 1.

Simulation N L2 Variance1 Variance2 Error

1 16 16 5.0620 4.5959 9.21%

2 36 36 10.541 10.7561 2.04%

3 64 64 21.718 24.0655 10.81%

4 100 100 40.660 35.8177 11.91%

5 144 144 51.152 63.5907 24.32%

6 196 196 74.629 82.854 11.02%

7 256 256 104.78 97.6628 6.79%

8 324 324 148.68 145.685 2.01%

9 400 400 160.13 149.148 6.86%

10 484 484 211.76 163.4284 22.82%
Table 1. For different system sizes the variance was measured. Two random seeds were used

resulting to two different values for the variance.

The particle trajectories, for each one of the 10 simulations can be found in the

Supplementary Material. The variance for each set of simulations seems to depend

linearly on the size of the system (Area of the simulation box).

Figure 2. Linear relation between the variance and the size of the system for the first set of simulations.

y = 0.4404x - 6.053
R² = 0.9919

0

50

100

150

200

250

0 100 200 300 400 500 600

V
ar

ia
n

ce
 1

L2

First Set of Simulations (Random Seed = 219)

Figure 3. Linear relation between the variance and the size of the system for the second set of simulations

4.2 Angular Momentum Fluctuations and Temperature

Next, the angular momentum fluctuations of the system were measured varying the

temperature and keeping the size and the density constant. For N=256 and L=16 values

for the mean and the variance of the distribution were obtained changing the

temperature from 0.001 to 10. Results are shown in table 2.

Simulation Initial
Temperature

Variance 1 Variance 2 Error

1 0.01 75.524 76.938 1.87%

2 0.05 110.70 92.710 16.3%

3 0.1 77.510 114.00 47.1%

4 0.5 86.181 92.550 7.39%

5 1 104.78 97.663 6.79%

6 2 145.12 143.00 1.46%

7 3 140.78 158.69 12.7%

8 4 157.48 180.92 14.9%

9 5 172.21 177.86 3.3%

10 6 171.97 194.12 12.9%

11 7 184.06 220.63 19.9%

12 8 218.16 220.83 1.22%

13 9 245.32 261.20 6.47%

14 10 221.35 251.35 13.5%

y = 0.3665x + 3.7184
R² = 0.9674

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600

V
ar

ia
n

ce
 2

L2

Second Set of Simulations (Random Seed =
500)

Table 2. For different initial temperatures the variance was measured. Two random seeds were

used resulting to two different variances. The error is estimated between these two values.

Figure 4. Variance as a function of the initial temperature for the first set of simulations

Figure 5. Variance as a function of the initial temperature for the second set of simulations

The particle trajectories, for the first set of simulations can be found in the

Supplementary Material.

y = 14.997x + 91.174
R² = 0.9318

0

50

100

150

200

250

300

0 2 4 6 8 10 12

V
ar

ia
n

ce
 1

Initial Temperatre

First Set of Simulations (Random seed = 219)

y = 17.085x + 95.109
R² = 0.9568

0

50

100

150

200

250

300

0 2 4 6 8 10 12

V
ar

ia
n

ce
 2

Initial Temperature

Second Set of Simulations (Random Seed =
500)

4.3 Angular Momentum Fluctuations and Density

For the next set of simulations the initial temperature was kept constant and equal to 1

and the number of particles was 256. To adjust the density of the system, different

values for the size of the box were selected. The results can be seen in table 3.

Simulation L Density Variance 1 Variance 2 Error

1 15.1 1.12276 116.088 112.796 2.84%

2 15.2 1.10803 116.039 113.030 2.59%

3 15.3 1.09360 115.687 126.300 9.17%

4 15.4 1.07944 129.749 101.838 21.5%

5 15.5 1.06556 104.100 124.054 19.2%

6 15.6 1.05194 135.644 115.783 14.6%

7 15.7 1.03858 100.077 122.417 22.3%

8 15.8 1.02548 132.248 111.094 16.0%

9 15.9 1.01262 116.563 98.7210 15.3%

10 16 1 104.782 97.6630 6.79%

11 16.1 0.987616 109.812 98.6994 10.1%

12 16.2 0.975461 86.953 94.8160 9.04%

13 16.3 0.963529 105.453 95.5480 9.39%

14 16.4 0.951814 111.258 97.2580 12.6%

15 16.5 0.940312 105.388 114.846 8.97%

16 16.6 0.929017 96.31 99.8890 3.71%

17 16.7 0.917925 106.774 89.3340 16.3%

18 16.8 0.907029 109.139 86.4280 20.8%

19 16.9 0.896327 84.23 110.829 31.6%

Table 3. For different system densities the mean and the variance were measured.

Figure 6. Fluctuating behavior of the variance as a function of the density of the system for the first set of
simulations

Figure 7. Fluctuating behavior of the variance as a function of the density for the second set of simulations

The particle trajectories, for each one of the 9 simulations can be found in the

Supplementary Material.

60

70

80

90

100

110

120

130

140

0.85 0.9 0.95 1 1.05 1.1 1.15

V
ar

ia
n

ce
 1

Density

First Set of Simulations (Random Seed = 219)

60

70

80

90

100

110

120

130

0.85 0.9 0.95 1 1.05 1.1 1.15

V
ar

ia
n

ce
 2

Density

Second Set of Simulations (Random Seed =
500)

5. Discussion

5.1 System Size and Variance

The aim of this study was to investigate possible connections between the non

conservative behavior of angular momentum and the physical characteristics of a two

dimensional Lennard Jones fluid in molecular dynamics simulations. The oscillatory

behavior of the projection of the angular momentum to the plane of the simulation was

reproduced successfully as expected by intuition and matches the resulting behavior

obtained in reference 2. From the first part of the results it can be seen that as the

system gets larger the fluctuations get larger but there is no obvious way that this is

related to the trajectories of the particles. For example, when going from Simulation 5

to Simulation 6 there is a clear difference, since in the latter one there is a group of

particles on the top right that have diffused away from their initial positions giving this

blurry spot. Although, the system is technically the same in some of the simulations this

diffusive behavior was observed and in these simulations the variance increment is

larger. This can be observed when going from Simulation 5 → 6, 6 →7, 7→8 and 9→10.

These increments in the variance of the distribution reflect the higher diffusivity of

certain groups of molecules and it is not observed for smaller systems. There is a

possibility that this is caused by the assignment of a very high initial velocity but there is

no reason why this would not happen in the smaller systems (Simulations 1 to 5). Since

variations in the angular momentum are sensitive to the change of the diffusivity of

particles then it would be reasonable to think a connection with phase transitions. As

the system approaches a more “mobile” state (e.g. from liquid to vapor or from solid to

liquid) fluctuations in the angular momentum become larger. For Simulation 11 to 16

there exists some hesitation when it comes to drawing conclusions because the

distributions seem to not follow the Gaussian behavior and larger simulation times are

needed.

5.2 Temperature and Variance

When it comes to the connection between variance and temperature it is clear that as

the system has a higher average temperature the particles move more rapidly and this is

reflected to larger angular momentum fluctuations.

5.3 Density and Variance

Surprisingly, the fluctuations seemed not to depend on the density of the system.

Intuition suggested that as the system gets less dense and these diffuse spots to appear

as in the first set of simulations, the variance would be larger. Apparently, variance

changes only a little and it’s even more surprising that for very dilute systems where

particles can practically move almost everywhere in the simulation cell, the fluctuations

in the angular momentum are not as large as expected.

6. Conclusions

From this work a number of conclusions can be drawn about the relation between

angular momentum fluctuations and the characteristics of the system. The ultimate goal

of this study is to relate the variance of the angular momentum distribution to finite size

effects. Apart from the aforementioned connection to phase transitions other effects

could be quantified. For example, the diffusion coefficient of a particle in a periodic fluid

needs to be corrected3 due to the hydrodynamic flow fields of all the periodic images of

the particle that decay as 1/r. This effect is similar mathematically to the Coulomb case

where the range is very large compared to Lennard Jones interactions and spurious

correlations may rise from interactions between a charged particle and its periodic

images. Moreover, when a particle moves in a fluid its momentum is transferred to the

rest of the fluid as sound and over damped shear waves through particle collisions. After

these waves travel distance that is comparable to the size of the box, the particle will

interact with itself giving rise to artificial correlations. It is not clear how these effects

can be related to the variances measured and probably more specific simulations should

be made. The next step would be to compare the results with different diffusion

coefficients and see if there are connections. Moreover a particle could be tagged and

carefully track its trajectory for a very long time to see if the hydrodynamics interactions

with itself are related with the variations to its angular momentum. Finally I would like

to suggest a few ways how this project can be improved. Firstly, more simulations with

different seeds must be run so that the error is minimized. This can also be done by

increasing the time of the simulation, letting this way the distribution of the angular

momentum to approach the Gaussian limit. The next step would be to investigate

further the mathematical relation between the variance and the physical characteristics

of the system. From a first simple approach it can be deduced that the variance changes

linearly with the size of the system and the initial temperature but seems to fluctuate

around a constant value as a function of the density of the system.

7. References

1) Hoover Wm. G. Lecture Notes in Physics: Molecular Dynamic. Berlin: Springer-Verlag,

1986

2) Kuzkin, V.A. "On Angular Momentum Balance for Particle Systems with Periodic

Boundary Conditions." ZAMM - Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik 95, no. 11 (2015): 1290-95.

3) Frenkel, D. "Simulations: The Dark Side." The European Physical Journal Plus 128, no.
1 (January 25 2013): 10.

4) Fetter, Alexander L., and John Dirk Walecka. Theoretical Mechanics of Particles and

Continua. New York: McGraw-Hill, 1980.

8. Appendix-Code used throughout the project (Brad Marston’s code taken

from canvas):

#!/usr/bin/env python

import numpy
import time
from numpy import *
from pylab import * # plotting library
from scipy.stats import norm
import matplotlib.mlab as mlab

import weave
from weave import converters

class MolecularDynamics:

 """Class that describes the molecular dynamics of a gas of atoms in units where m = epsilon = sigma =
kb = 1"""

 dt = 0.001 # time increment
 sampleInterval = 100

 def __init__(self, N=4, L=10.0, initialTemperature=0.0, initialAngularMomentum=0.0):

 numpy.random.seed(219) # random number generator used for initial velocities (and sometimes
positions) seed was 219

 self.N = N # number of particles
 self.L = L # length of square side
 self.initialTemperature = initialTemperature
 self.initialAngularMomentum = initialAngularMomentum

 self.t = 0.0 # initial time
 self.tArray = array([self.t]) # array of time steps that is added to during integration
 self.steps = 0

 self.EnergyArray = array([]) # list of energy, sampled every sampleInterval time steps
 self.sampleTimeArray = array([])
 self.angularMomentumArray = array([])

 # accumulate statistics during time evolution
 self.temperatureArray = array([self.initialTemperature])
 self.temperatureAccumulator = 0.0
 self.angularMomentumArray = array([self.initialAngularMomentum])
 self.angularMomentumAccumulator = 0.0
 self.squareTemperatureAccumulator = 0.0
 self.virialAccumulator = 0.0

 self.x = zeros(2*N) # NumPy array of N (x, y) positions
 self.v = zeros(2*N) # array of N (vx, vy) velocities

 self.xArray = array([]) # particle positions that is added to during integration
 self.vArray = array([]) # particle velocities

 self.forceType = "weavelennardJones"

 def minimumImage(self, x): # minimum image approximation (Gould Listing 8.2)

 L = self.L
 halfL = 0.5 * L

 return (x + halfL) % L - halfL

 def force(self):

 if (self.forceType == "weavelennardJones"):
 #f, virial = self.lennardJonesForce()
 f, virial = self.weaveLennardJonesForce()

 if (self.forceType == "weavepowerLaw"):
 #f, virial = self.powerLawForce()
 f, virial = self.weavePowerLawForce()

 self.virialAccumulator += virial

 return f

 def lennardJonesForce(self): # Gould Eq. 8.3 (NumPy vector form which is faster)

 N = self.N
 virial = 0.0
 tiny = 1.0e-40 # prevents division by zero in calculation of self-force
 L = self.L
 halfL = 0.5 * L

 x = self.x[arange(0, 2*N, 2)]
 y = self.x[arange(1, 2*N, 2)]
 f = zeros(2*N)

 minimumImage = self.minimumImage

 for i in range(N): # The O(N**2) calculation that slows everything down

 dx = minimumImage(x[i] - x)
 dy = minimumImage(y[i] - y)

 r2inv = 1.0/(dx**2 + dy**2 + tiny)
 c = 48.0 * r2inv**7 - 24.0 * r2inv**4
 fx = dx * c
 fy = dy * c

 fx[i] = 0.0 # no self force
 fy[i] = 0.0
 f[2*i] = fx.sum()
 f[2*i+1] = fy.sum()

 virial += dot(fx, dx) + dot(fy, dy)

 return f, 0.5*virial

 def weaveLennardJonesForce(self): # Gould Eq. 8.3

 N = self.N
 L = self.L
 halfL = 0.5 * L

 x = self.x[arange(0, 2*N, 2)]
 y = self.x[arange(1, 2*N, 2)]

 f = zeros(2*N)
 virial = zeros(1)

 code = """
 double dx, dy, r2inv, r6inv, r8inv, c, fx, fy;

 for (int i = 0; i < N; i++) {
 for (int j = i+1; j < N; j++) {

 dx = x(i) - x(j);
 if (dx > halfL) dx = dx - L;
 if (dx < -halfL) dx = dx + L;

 dy = y(i) - y(j);
 if (dy > halfL) dy = dy - L;
 if (dy < -halfL) dy = dy + L;

 r2inv = 1.0 / (dx*dx + dy*dy);
 r6inv = r2inv*r2inv*r2inv;
 r8inv = r2inv*r6inv;
 c = 48.0 * r8inv*r6inv - 24.0 * r8inv;
 fx = dx * c;
 fy = dy * c;

 f(2*i) += fx;
 f(2*i+1) += fy;
 f(2*j) -= fx; // Newton's 3rd law
 f(2*j+1) -= fy;

 virial(0) += fx*dx + fy*dy; // for virial accumulator (calculation of pressure)

 }
 }
 """

 weave.inline(code, ['N', 'x', 'y', 'L', 'halfL', 'f', 'virial'], type_converters=converters.blitz, compiler='gcc')

 return f, virial[0]

 def powerLawForce(self):

 N = self.N
 virial = 0.0
 tiny = 1.0e-40 # prevents division by zero in calculation of self-force
 halfL = 0.5 * self.L

 x = self.x[arange(0, 2*N, 2)]
 y = self.x[arange(1, 2*N, 2)]
 f = zeros(2*N)
 minimumImage = self.minimumImage
 for i in range(N): # The O(N**2) calculation that slows everything down

 dx = minimumImage(x[i] - x)
 dy = minimumImage(y[i] - y)

 r2 = dx**2 + dy**2 + tiny
 r6inv = pow(r2, -3)
 fx = dx * r6inv
 fy = dy * r6inv

 fx[i] = 0.0 # no self force
 fy[i] = 0.0
 f[2*i] = fx.sum()
 f[2*i+1] = fy.sum()

 virial += dot(fx, dx) + dot(fy, dy)

 return f, 0.5 * virial

 def weavePowerLawForce(self): # Gould Eq. 8.3

 N = self.N
 L = self.L
 halfL = 0.5 * L

 x = self.x[arange(0, 2*N, 2)]
 y = self.x[arange(1, 2*N, 2)]

 f = zeros(2*N)
 virial = zeros(1)

 code = """
 double dx, dy, r2inv, r6inv, r8inv, c, fx, fy;

 for (int i = 0; i < N; i++) {
 for (int j = i+1; j < N; j++) {

 dx = x(i) - x(j);
 if (dx > halfL) dx = dx - L;
 if (dx < -halfL) dx = dx + L;

 dy = y(i) - y(j);
 if (dy > halfL) dy = dy - L;
 if (dy < -halfL) dy = dy + L;

 r2inv = 1.0 / (dx*dx + dy*dy);
 r6inv = r2inv*r2inv*r2inv;
 fx = dx * r6inv;
 fy = dy * r6inv;

 f(2*i) += fx;
 f(2*i+1) += fy;
 f(2*j) -= fx; // Newton's 3rd law
 f(2*j+1) -= fy;

 virial(0) += fx*dx + fy*dy; // for virial accumulator (calculation of pressure)

 }
 }
 """

 weave.inline(code, ['N', 'x', 'y', 'L', 'halfL', 'f', 'virial'], type_converters=converters.blitz, compiler='gcc')

 return f, virial[0]

TIME EVOLUTION METHODS

 def verletStep(self): # Gould Eqs. 8.4a and 8.4b

 a = self.force()
 self.x += self.v * self.dt + 0.5 * self.dt**2 * a
 self.x = self.x % self.L # periodic boundary conditions
 self.v += 0.5 * self.dt * (a + self.force())

 def evolve(self, time=10.0):

 steps = int(abs(time/self.dt))
 for i in range(steps):

 self.verletStep()
 self.zeroTotalMomentum()

 self.t += self.dt
 self.tArray = append(self.tArray, self.t)

 if (i % self.sampleInterval == 0): # only calculate energy every sampleInterval steps to reduce load
 self.EnergyArray = append(self.EnergyArray, self.energy())
 self.sampleTimeArray = append(self.sampleTimeArray, self.t)
 self.xArray = append(self.xArray, self.x)
 self.vArray = append(self.vArray, self.v)

 T = self.temperature()
 self.steps += 1
 self.temperatureArray = append(self.temperatureArray, T)
 self.temperatureAccumulator += T
 self.squareTemperatureAccumulator += T*T

 L = self.angularMomentum()
 self.steps += 1

 self.angularMomentumArray = append(self.angularMomentumArray, L)
 self.angularMomentumAccumulator += L

 def zeroTotalMomentum(self):

 vx = self.v[arange(0, 2*self.N, 2)]
 vy = self.v[arange(1, 2*self.N, 2)]

 vx -= vx.mean() # zero mean momentum
 vy -= vy.mean()

 self.v[arange(0, 2*self.N, 2)] = vx
 self.v[arange(1, 2*self.N, 2)] = vy

 def reverseTime(self):

 self.dt = -self.dt

 def cool(self, time=1.0):

 steps = int(time/self.dt)
 for i in range(steps):
 self.verletStep()
 self.v *= (1.0 - self.dt) # friction slows down atoms

 self.resetStatistics()

INITIAL CONDITION METHODS

 def randomPositions(self):

 self.x = self.L * numpy.random.random(2*self.N)

 self.forceType = "weavepowerLaw"
 self.cool(time=1.0)
 self.forceType = "weavelennardJones"

 def triangularLatticePositions(self):

 self.rectangularLatticePositions()
 #self.randomPositions()
 self.v += numpy.random.random(2*self.N) - 0.5 # jiggle to break symmetry

 self.forceType = "weavepowerLaw"
 self.cool(time=10.0)
 self.forceType = "weavelennardJones"

 def rectangularLatticePositions(self): # assume that N is a square integer (4, 16, 64, ...)

 nx = int(sqrt(self.N))
 ny = nx
 dx = self.L / nx
 dy = self.L / ny

 for i in range(nx):
 x = (i + 0.5) * dx
 for j in range(ny):
 y = (j + 0.5) * dy
 self.x[2*(i*ny+j)] = x
 self.x[2*(i*ny+j)+1] = y

 def randomVelocities(self):

 self.v = numpy.random.random(2*self.N) - 0.5

 self.zeroTotalMomentum()

 T = self.temperature()
 self.v *= sqrt(self.initialTemperature/T)

MEASUREMENT METHODS

 def kineticEnergy(self):

 return 0.5 * (self.v * self.v).sum()

 def potentialEnergy(self):

 return self.weaveLennardJonesPotentialEnergy()
 #return self.lennardJonesPotentialEnergy()

 def lennardJonesPotentialEnergy(self): # Gould Eqs. 8.1 and 8.2

 tiny = 1.0e-40 # prevents division by zero in calculation of self-force
 halfL = 0.5 * self.L
 N = self.N

 x = self.x[arange(0, 2*N, 2)]
 y = self.x[arange(1, 2*N, 2)]
 U = 0.0
 minimumImage = self.minimumImage
 for i in range(N): # The O(N**2) calculation that slows everything down

 dx = minimumImage(x[i] - x)
 dy = minimumImage(y[i] - y)

 r2inv = 1.0/(dx**2 + dy**2 + tiny)
 dU = r2inv**6 - r2inv**3
 dU[i] = 0.0 # no self-interaction
 U += dU.sum()

 return 2.0 * U

 def weaveLennardJonesPotentialEnergy(self): # Gould Eqs. 8.1 and 8.2

 L = self.L
 halfL = 0.5 * L
 N = self.N

 x = self.x[arange(0, 2*N, 2)]
 y = self.x[arange(1, 2*N, 2)]
 U = zeros(1)

 code = """
 double dx, dy, r2inv, r6inv;

 for (int i = 0; i < N; i++) {
 for (int j = i+1; j < N; j++) {

 dx = x(i) - x(j);
 if (dx > halfL) dx = dx - L;
 if (dx < -halfL) dx = dx + L;

 dy = y(i) - y(j);
 if (dy > halfL) dy = dy - L;
 if (dy < -halfL) dy = dy + L;

 r2inv = 1.0 / (dx*dx + dy*dy);
 r6inv = r2inv*r2inv*r2inv;

 U(0) += r6inv*r6inv - r6inv;

 }
 }
 """

 weave.inline(code, ['N', 'x', 'y', 'L', 'halfL', 'U'], type_converters=converters.blitz, compiler='gcc')

 return 4.0 * U[0]

 def energy(self):

 return self.potentialEnergy() + self.kineticEnergy()

 def temperature(self): # Gould Eq. 8.6

 return self.kineticEnergy() / self.N

 def angularMomentum(self): # Calculate z component of angular momentum using definition

 vx = self.v[arange(0, 2*self.N, 2)]
 vy = self.v[arange(1, 2*self.N, 2)]

 x = self.x[arange(0, 2*self.N, 2)]

 y = self.x[arange(1, 2*self.N, 2)]

 return ((x-self.L/2)*vy-(y-self.L/2)*vx).sum()

STATISTICS METHODS

 def resetStatistics(self):

 self.steps = 0
 self.temperatureAccumulator = 0.0
 self.angularMomentumAccumulator = 0.0
 self.squareTemperatureAccumulator = 0.0
 self.virialAccumulator = 0.0
 self.xArray = array([])
 self.vArray = array([])

 def meanTemperature(self):

 return self.temperatureAccumulator / self.steps

 def meanSquareTemperature(self):

 return self.squareTemperatureAccumulator / self.steps

 def meanPressure(self): # Gould Eq. 8.9

 meanVirial = 0.5 * self.virialAccumulator / self.steps # divide by 2 because force is calculated twice
per step
 return 1.0 + 0.5 * meanVirial / (self.N * self.meanTemperature())

 def heatCapacity(self): # Gould Eq. 8.12

 meanTemperature = self.meanTemperature()
 meanSquareTemperature = self.meanSquareTemperature()
 sigma2 = meanSquareTemperature - meanTemperature**2
 denom = 1.0 - sigma2 * self.N / meanTemperature**2
 return self.N / denom

 def meanEnergy(self):

 return self.EnergyArray.mean()

 def stdEnergy(self):

 return self.EnergyArray.std()

PLOTTING METHODS

 def plotPositions(self):

 figure(1)
 scatter(self.x[arange(0, 2*self.N, 2)], self.x[arange(1, 2*self.N, 2)], s=5.0, marker='o', alpha=1.0)
 xlabel("x")
 ylabel("y")

 def plotTrajectories(self, number=1):

 figure(2)
 xlabel("x")
 ylabel("y")
 N = self.N
 size = len(self.xArray)/(2*N)
 r = reshape(self.xArray, [size, 2*N])
 for i in range(number):
 x = r[:, 2*i]
 y = r[:, 2*i+1]
 plot(x, y, ".")

 def plotTemperature(self):

 figure(3)
 plot(self.tArray, self.temperatureArray)
 xlabel("time")
 ylabel("temperature")

 def plotEnergy(self):

 figure(4)
 plot(self.sampleTimeArray, self.EnergyArray)
 xlabel("time")
 ylabel("Energy")

 def velocityHistogram(self):

 figure(5)
 hist(self.vArray, bins=100, normed=1)
 xlabel("velocity in x- or y-directions")
 ylabel("probability")

 def plotAngularMomentum(self):

 figure(6)
 plot(self.tArray, self.angularMomentumArray)
 xlabel("time")
 ylabel("Angular Momentum")

 def angularMomentumHistogram(self):

 figure(7)
 hist(self.angularMomentumArray, bins=100, normed=1)
 xlabel('angular momentum')

 ylabel('Probability')

 mu = mean(self.angularMomentumArray)
 variance = var(self.angularMomentumArray)
 sigma = sqrt(variance)
 print("Mean of the Gaussian Distribution is : ",mu)
 print("Sigma of the Gaussian Distribution is : ",sigma)

 t = linspace(min(self.angularMomentumArray), max(self.angularMomentumArray), 100)
 plot(t, mlab.normpdf(t, mu, sigma))

 def showPlots(self):
 show()

RESULTS METHODS

 def results(self):
 print("\n\nRESULTS\n")
 print("time = ", md.t, " total energy = ", md.energy(), " and temperature = ", md.temperature())
 if (self.steps > 0):
 print("Mean energy = ", md.meanEnergy(), " and standard deviation = ", md.stdEnergy())
 print("Cv = ", md.heatCapacity(), " and PV/NkT = ", md.meanPressure())

start = time.time()
#md = MolecularDynamics(N=16, L=4, initialTemperature=1.0, initialAngularMomentum=0.0) # instantiate
object
#md = MolecularDynamics(N=36, L=6, initialTemperature=1.0, initialAngularMomentum=0.0) # instantiate
object
#md = MolecularDynamics(N=64, L=8, initialTemperature=1.0, initialAngularMomentum=0.0) # instantiate
object
#md = MolecularDynamics(N=100, L=10, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=144, L=12, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=196, L=14, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object

#md = MolecularDynamics(N=256, L=30, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=20, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=19, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=18, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=17, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=15.1, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=15.2, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=15.3, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object

#md = MolecularDynamics(N=256, L=15.4, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=15.5, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=15.6, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=15.7, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=15.8, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=15.9, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object

#md = MolecularDynamics(N=256, L=16.1, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16.2, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16.3, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16.4, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16.5, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16.6, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16.7, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16.8, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object
md = MolecularDynamics(N=256, L=16.9, initialTemperature=1, initialAngularMomentum=0.0) #
instantiate object

#md = MolecularDynamics(N=256, L=16, initialTemperature=0.05, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=0.1, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=0.5, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=2.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=3.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=4.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=5.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=6.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=7.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=8.0, initialAngularMomentum=0.0) #
instantiate object

#md = MolecularDynamics(N=256, L=16, initialTemperature=9.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=256, L=16, initialTemperature=10.0, initialAngularMomentum=0.0) #
instantiate object

#md = MolecularDynamics(N=324, L=18, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=400, L=20, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=484, L=22, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=576, L=24, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=676, L=26, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=784, L=28, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=900, L=30, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=1024, L=32, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object
#md = MolecularDynamics(N=1156, L=34, initialTemperature=1.0, initialAngularMomentum=0.0) #
instantiate object

EQUILIBRATION AND STATISTICS
md.triangularLatticePositions()
md.randomVelocities()
md.plotPositions()
md.results()
md.evolve(time=10.0) # initial time evolution
md.resetStatistics() # remove transient behavior
md.evolve(time=20.0) # accumulate statistics
md.results()
md.angularMomentum()

end = time.time()
print('Time is %.2f'%(end-start))

md.plotEnergy()
md.plotTrajectories(md.N)
md.plotTemperature()
md.velocityHistogram()
md.plotAngularMomentum()
md.angularMomentumHistogram()
md.showPlots()

9. Supplementary Material

9.1 Angular Momentum and System Size Figures

Particle trajectories with increasing system size (From simulation 1 to 16):

9.2 Angular Momentum and Temperature Figures

Particle trajectories of different simulations with increasing initial temperature (N=256

and ρ=1):

9.3 Angular Momentum and Density Figures

Particle trajectories from different simulations with decreasing density (N=256 and

initial temperature=1 for all simulations):

