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1 The 2D Ising model

Imagine a LxL square lattice where each site j is occupied by a spin sj that
can take the value +1 or −1. One particular combination of N = L2 spins,
{s1, s2, ..., sN} = {si} = i, defines one configuration/state (all possible states
of a system with N sites is 2N ) of the system and it corresponds to a specific
amount of energy according to the usual Hamiltonian with nearest neighbor
interactions and zero external magnetic field,

Hi = Ei = −J
∑

<j,k>

sjsk

Where J is a positive constant that defines the energy scale of the problem
and favors parallel alignment between two neighboring spins (−J). In case two
neighboring spins are anti-parallel to each other, the energy of interaction is
+J . The magnetization (per spin) of the system in state i is given by,

mi =
1

N

∑
j

sj

At a given temperature, T , our system has both energetic contributions to the
free energy as well as entropic ones. Remember from class,

A = ⟨E⟩ − T ⟨S⟩ ?−→ E − TS

At very low T all spins are aligned and we have an energetically favorable
situation,

⟨E⟩ = −2NJ

Entropy of a state where every spin points upwards?

It is interesting to look at those states that dominate for a given T . Find
that perfect sweet spot between energy and entropy. Apparently for low tem-
peratures there is scarcity of thermal energy available and spins orient upwards
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(or downwards) giving rise to the ferromagnetic phase m = +1. On the other
hand at high temperatures we have a 50:50 mixture of spins namely a param-
agnetic phase where m = 0.

The question is: What kind of phase transition do we have? 1st order? 2nd
order? Perhaps no transition at all? How does the ⟨m⟩ vs T diagram looks like?

2 Direct calculation

What is the simplest possible approach to calculating thermodynamic variables?
A few naive ideas and why we will need a more sophisticated algorithm

like Metropolis. In principal we could just start going through every each one
configuration of the system (How many?), calculate its energy

Ei = −J
∑
⟨j,k⟩

sjsk

Calculate the unnormalized probability based on the Boltzmann distribution,

pi = exp (
−Ei

kBT
)

After that we would calculate the partition function,

Q =
∑
i

pi =
∑
i

exp (
−Ei

kBT
)

Then we would be able to calculate thermodynamic properties as well as the
magnetization at thermal equilibrium for each possible value of T ,

⟨E⟩ =
∑

i piEi

Q

⟨m⟩ =
∑

i pimi

Q
Why can’t we just do that? Just like we did in the 1d case in class. Turns out
we can’t find analytical expression for the sum in most models. Therefore we
need approximate solutions or computer simulations.

3 Will this work?

Think of a 5x5 square lattice with 25 spins. The total number of states is,

225 ≈ 107

Technically we can write all the possible states down and by calculating the
energy of each state we can evaluate the partition function, the energy, the
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magnetization, the heat capacity etc. Problem: TAKES FOREVER. For a
lattice of 10x10 the number of states is

2100 ≈ 1030

That means that we can’t use all of the states of the system in order to calculate
thermodynamic properties. We have no choice but to pick a subset M of all
the possible states. The question boils down to HOW DO WE GENERATE M
EFFECTIVELY?

4 Monte Carlo - Statistical Sampling

It is an old mathematical idea called statistical sampling where we generate
configurations randomly (thus the casino inspired name of the method). All
states have an equally likely chance of getting picked. Take for example a tiny
system of 10x10 . The total number of possible states is 2100 ≈ 1030. Since we
are limited by computational power we will rely on ,

M = 106

randomly generated states. The probability of choosing each one of the 1030

states is the same,

πi =
1

1030
,∀i ∈ {1, 2, ..., 1030}

Let’s see what could go wrong with that procedure. Imagine we simulate a very
cold system where kBT is very small. Only very ordered states are gonna be
thermally accessible and will have significant contribution in the calculation of
the partition function,

Q =
∑

high order states

exp (
−Ei

kBT
) +

∑
rest of states

exp (
−Ei

kBT
)

Same for averages,

⟨E⟩ =
∑

high order states

PiEi +
∑

rest of states

PiEi

The second term in both equations is going to be very small because the Boltz-
mann weights are gonna be tiny (there is not enough thermal energy to access
them), ∑

rest of states

EiPi = tiny

So you see the problem here. Both unimportant and important states have
equal probability, πi, of being chosen and so we spend precious computational
time sampling states with little to no contribution to our sums. That is poor
sampling. Why would you even spend time calculating the energy of a very
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disordered state since there is not enough thermal energy to get there and thus
has a probability of zero. The opposite is true for high kBT where entropy
dominates and calculating the energy of very ordered states is a waste of time.
Need a more intelligent method than generating samples with equal probability.

5 Metropolis algorithm

This is why the Metropolis algorithm was born in Los Alamos in 1953. Now we
start from a random spin configuration and transition gradually to the ”impor-
tant” states. The basic quantity is the transition probability, P (X → Y ),
from one state to another and needs to satisfy the so-called detailed balance.
This is the heart of the simulation and is actually a chemistry idea. Imagine
the following reaction,

X
kX→Y−−−−⇀↽−−−−
kY →X

Y

At equilibrium we have,

kX→Y [X] = kY→X [Y ]

Similarly we can think of a detailed balance between two states X and Y instead
of reactants,

P (X → Y )P (X) = P (Y → X)P (Y )

or,
P (X → Y )

P (Y → X)
=

P (Y )

P (X)

If you think about it, the probability that our system will go from X to Y
is simply the product of two factors: How probable it is that our system will
propose that move and how probable it is that our algorithm will accept the
move. Mathematically that means,

P (X → Y ) = gprop(X → Y )A(X → Y )

But in our case the probability that we propose one move will be the same with
the probability of proposing the reversible move,

gprop(X → Y ) = gprop(Y → X)

Starting from an initial lattice we propose a single spin flip every time. The
probability of the opposite step is going to be the same. Lastly, the probabilities
of each state are chosen form the Boltzmann distribution so,

P (X → Y )

P (Y → X)
= exp (−β(EY − EX))

So that leaves us with the following expression,

A(X → Y )

A(Y → X)
= exp (−β(EY − EX))
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This is the final part of the algorithm where you choose the next state based on
the energy difference,

A(X → Y ) =

{
exp (−β(EY − EX)), EY > EX

1, EY < EX

Basically you pick a random spin in the lattice, flip it, measure the energy
difference. If the new energy is lower you accept the move with 100% probabil-
ity. If the new energy is higher then you accept the move with probability of
exp (−β(EY − EX))x100%. This process will eventually generate a sequence of
spin configurations that are guaranteed to reach the Boltzmann distribution.

6 Results

Go to Jupyter!
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