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1 The spherical cow joke

Milk production at a dairy farm was low, so the farmer wrote to the local university, asking for
help from academia. A multidisciplinary team of professors was assembled, headed by a theoretical
physicist, and two weeks of intensive on-site investigation took place. The scholars then returned
to the university, notebooks crammed with data, where the task of writing the report was left to
the team leader. Shortly thereafter the physicist returned to the farm, saying to the farmer, ”I
have the solution, but it works only in the case of spherical cows in a vacuum.”

2 End-to-end distance of a linear polymer

A simple way of distinguishing between a folded and an unfolded state is to measure the end-to-end
distance of the polymer. For N connected monomers we have M = N − 1 links of length d and
the end-to end distance reads,

Ree = d

M∑
l=1

Ω̂l

where

Ω̂l =

cosϕl sin θl
sinϕl sin θl

cos θl


is the unit direction of a single link in space. It is easier to work with the dimensionless order
parameter,

r =
1

M

√
Ree ·Ree =

Ree

Md

where Md is the maximum extension of the polymer. Now we have,

r → 0 coil

r → 1 globule

We are interested in the probability distribution P (Ree). It can be extracted from the theory we
have developed for orientational order in finite liquid crystal samples in the isotropic phase.
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3 Uncorrelated polymer - 3D random flight

3.1 Exact answer - Direct evaluation

In the case of a non-interacting polymer we have I.I.D. random variables and we can calculate the
exact answer directly,

P (Ree) =

〈
δ(Ree − d

M∑
l=1

Ω̂l)

〉

=

〈
δ

(
R1 − d

M∑
l=1

cosϕl sin θl

)
δ

(
R2 − d

M∑
l=1

sinϕl sin θl

)
δ

(
R3 − d

M∑
l=1

cos θl

)〉

With the use of the Fourier representation of the delta function we get,

P (Ree) =
1

(2π)3

∫
dkeik·ReeGM

1 (k)

G1(k) =
sin (kd)

(kd)

where G1(k) is the single molecule generating function in the Fourier space. After a straightforward
manipulation and multiplying with the surface element of a hyper-sphere,

P (Ree) =
2πD/2RD−1

ee

Γ(D/2)
P (Ree), D = 3 for us

we end up with the following exact answer for the probability density,

P (Ree) =
2

π

∫ ∞

0

(kRee) sin (kRee)

(
sin (kd)

(kd)

)M

dk

This is the 3D random flight with individual flight length d and with the number of wing flaps
being M = N − 1. We can play with the low k limit of the integral and recover the central limit
theory answer where the bird stays on average at the origin after many wing flaps. Notice how we
solved for the extensive variable. It is straightforward to solve for the intensive variable r if needed.
I solved for the extensive variable Ree in order to compare with the mathematics literature.

3.2 Large deviations theory

Our analysis is based on the intensive/extensive relation between γ and Ree. More specifically we
recall,

eMλ(γ) =
〈
eγ·Ree

〉
Ree = M∇γλ(γ)

P (Ree) ∼ e−MI(Ree)

I(Ree) = γ · Ree

M
− λ(γ)

And for isotropic probability distributions we can write everything in terms of the modulus of Ree.
More specifically, we have,

r =
Ree

Md

and
g = γd

which leads to the drastic simplification of our formulas,

r =
dλ(g)

dg
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I(Ree) = r(g)g − ln

(
sinh g

g

)
, r(g) = coth g − 1

g

P (Ree) ∼ e−MI(Ree)

where the function r(g) is called the Langevin function and is of great interest in single molecule
force-extension experiments. In fact, Pade’ interpolation has already been used extensively as
a way of accurately representing the more complicated Langevin function with simple ratios of
polynomials.

Furthermore, we recover an old mathematical result from Kuhn and Grun,

P (Ree) ∼
(

sinhβ(r)

β(r) exp (rβ(r))

)M

where β(r) is the inverse function of the Langevin function. Basically this is a manifestation of
the fact that the Gaertner-Ellis theorem is derived through a saddle point approximation method.

3.3 Low g limit

The cumulant generating function for the low field g simplifies to,

λ(g) = ln
sinh g

g
≈ g2

6
+O(g4), g → 0

and the equation of state reads,

r(g) = coth g − 1

g
≈ g

3
+O(g3), g → 0

which yields the following central limit theory equation of state,

gclt(r) ≈ 3r +O(r3), r → 0

3.4 Large g limit

r(g) = coth g − 1

g
≈ 1− 1

g
+O(e−2g), g → ∞

which implies,

g(r) =
1

1− r
+ ηuncorr, r → 1

In the case of 2D liquid crystals we had ηuncorr = 1
4 . In our case I think it is ηuncorr = 0 because

the remainder terms from the power series in the large limit all include exponentials. I am not
sure though so I will keep it as ηuncorr.

3.5 Simulation

It is a trivial sampling of 3D unit vectors. A 20-line Python code.
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4 Interacting case

4.1 Central limit theory answer and contact with simple models in the
polymer physics literature

For the interacting case we can solve the low field limit exactly using the standard methods of
statistics,

λ(g) ≈ χ

6
g2 +O(g4), g → 0

with

χ =

〈
1

M

M∑
l,l′=1

Ω̂l · Ω̂′
l

〉
=

〈
R2

ee

〉
Md2

= M
〈
r2
〉

In general ⟨xµxν⟩ =
1

D
⟨x · x⟩

We can make connections with the polymer-physics literature. In the context of the so called
”Freely jointed chain model”, 〈

R2
ee

〉
= χMMd2

χM is called Flory’s characteristic ratio and when the chain obtains its maximum end-to-end
distance we have,

Mb = Rmax

where b is called the Kuhn monomer length. For large polymers we can approximate the charac-
teristic ratio with its saturated value at M → ∞ (Thermodynamic limit for us) and say,〈

R2
ee

〉
≈ χ∞Md2

e.g. for 1,4-Polyisoprene (PI) with ,

−(CH2CH = CHCH(CH3))−, χ∞ = 4.6 and b = 8.2Å

(Values taken from M. Rubinstein, Ralph H. Colby - Polymer Physics).
Back to large deviations. It can be proven rigorously that the odd-body terms in the scaled

cumulant generating function vanish because of symmetry reasons. The corresponding equation of
state now is,

gclt(r) =
3

χ
r +O(r3), r → 0

This linear relation between the field and the extension of the rubber band is known as Hooke’s
law. In D dimensions we have,

gclt(r) =
D

χ
r

4.2 Large g limit

The large field limit of the equation of state will be modified by a mean field correlation constant
just as in the case of liquid crystals,

g(r) =
1

1− r
+ ηcorr, ηcorr = −ηuncorr − c

Again, ηuncorr will be derived from inverting the field limit power series. In our case it is going to
be zero. Again, in D dimensions we get,

g(r) =
D − 1

2

1

1− r
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4.3 Pade’ interpolation

We know only the limiting behaviors,

g(r) =


3
χr +O(r3), r → 0

1
(1−r) + ηcorr, r → 1

or g(r) =


D
χ r +O(r3), r → 0

D−1
2

1
(1−r) + ηcorr, r → 1

By looking at the odd symmetry in r of the low field limit we can write down an odd Pade’
approximant for g(r),

g(r) =
3

χ

r +Ar3 +Br5

1− r2
or g(r) =

D

χ

r +Ar3 +Br5

1− r2

where

A+B + 1 =
2χ

3

3B

4χ
=

1

4
(δpol + c+ ηuncorr − 1

2
), δpol =

3

χ
− 2

in D-dim:
D

χ
B = −1

4
(D − 1)− ηcorr + δD

δD =
D

χ
− (D − 1)

By integration we get the rate function,

I(Ree) =
1

2
δpolr2 − 3B

4χ
r4 − ln (1− r2)

I(Ree) =
1

2
δDr2 − DB

4χ
r4 − 1

2
(D − 1) ln (1− r2)

Finally the probability density is,

P (r) ∼ r2(1− r2)M exp

(
−M

2
δpolr2

)
exp

(
M

3B

4χ
r4
)

P (r) ∼ r2(1− r2)M(D−1)/2 exp

(
−M

2
δDr2

)
exp

(
M

DB

4χ
r4
)

5 Radius of gyration

The radius of gyration is defined as,

R2
g =

∑
k

∑
l

ck,lr⃗k · r⃗l

which is the square of the modulus of the vector that has components,

(R⃗g)l =
∑
k

√
ck,lrk

The low field limit of the probability distribution of the modulus of the vector has been worked
out by Fixman. The answer reads,

P (Rg) ≈ 18

(
6

π
〈
R2

g

〉)1/2

t−5/2 exp

(
− 9

4t

)

t =
R2

g〈
R2

g

〉 =
6R2

g

Mb
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6 Appendix

6.1 Symmetry of the non-interacting cumulant generating function

6.2 Symmetry of the interacting cumulant generating function

By definition,

eNλ(g⃗) =

〈
exp (g⃗ ·

N∑
j=1

êj)

〉
The logarithm of the MGF will give a power series where each term is an n-body correlation,

Nλ(g⃗) =
1

2!

〈
N∑
j,k

3∑
p,q

epje
q
kg

pgq

〉
+

1

3!

〈
N∑

j,k,l

3∑
p,q,r

epje
q
ke

r
l g

pgqgr

〉
+O(g4)

êj = {epj}{p=1,2,3} =

cosϕj sin θj
sinϕj sin θj

cos θj


êk = {eqk}{q=1,2,3} =

cosϕk sin θk
sinϕk sin θk

cos θk


êl = {erl }{r=1,2,3} =

cosϕl sin θl
sinϕl sin θl

cos θl


The first cumulant will be identically zero as we are in the isotropic phase. Insight from the non-
interacting case dictates that the odd terms will be zero as well. The second cumulant is a matrix
and only the diagonal elements (p = q = r) are non-zero. In fact they are the same,〈

N∑
j,k

3∑
p

epje
p
k

〉
=

1

3

〈
N∑

j,k=1

P1(êj · êk)

〉

And the third (odd) term is,〈
N∑

j,k,l

3∑
p

epje
p
ke

p
l

〉
=

N∑
j,k,l

⟨P1(êj · x̂)P1(êk · x̂)P1(êl · x̂)⟩ = 0

It does not matter which axis we measure the orientations from,

P1(êj · x̂)P1(êk · x̂)P1(êl · x̂) =
∫

dx̂P1(êj · x̂)P1(êk · x̂)P1(êl · x̂)

because we integrate odd functions over a whole cycle the result is zero. In general,∫
dx̂

T∏
t=1

P1(êt · x̂) =

{
= 0, T = 2n+ 1

̸= 0, T = 2n

In the 3D liquid crystal case, the odd terms consist of even functions and so they do not go to
zero, ∫

dx̂

S∏
s=1

P2(ês · x̂) =

{
̸= 0, S = 2n+ 1

̸= 0, S = 2n
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